Can silencing of transposons contribute to variation in effector gene expression in Phytophthora infestans?
نویسندگان
چکیده
Transposable elements are ubiquitous residents in eukaryotic genomes. Often considered to be genomic parasites, they can lead to dramatic changes in genome organization, gene expression, and gene evolution. The oomycete plant pathogen Phytophthora infestans has evolved a genome organization where core biology genes are predominantly located in genome regions that have relatively few resident transposons. In contrast, disease effector-encoding genes are most frequently located in rapidly evolving genomic regions that are rich in transposons. P. infestans, as a eukaryote, likely uses RNA silencing to minimize the activity of transposons. We have shown that fusion of a short interspersed element (SINE) to an effector gene in P. infestans leads to the silencing of both the introduced fusion and endogenous homologous sequences. This is also likely to occur naturally in the genome of P. infestans, as transcriptional inactivation of effectors is known to occur, and over half of the translocated "RXLR class" of effectors are located within 2 kb of transposon sequences in the P. infestans genome. In this commentary, we review the diverse transposon inventory of P. infestans, its control by RNA silencing, and consequences for expression modulation of nearby effector genes in this economically important plant pathogen.
منابع مشابه
Phenotypic diversification by gene silencing in Phytophthora plant pathogens
Advances in genome sequencing technologies have enabled generation of unprecedented information on genome content and organization. Eukaryote genomes in particular may contain large populations of transposable elements (TEs) and other repeated sequences. Active TEs can result in insertional mutations, altered transcription levels and ectopic recombination of DNA. The genome of the oomycete plan...
متن کاملPhytophthora infestans Argonaute 1 binds microRNA and small RNAs from effector genes and transposable elements.
Phytophthora spp. encode large sets of effector proteins and distinct populations of small RNAs (sRNAs). Recent evidence has suggested that pathogen-derived sRNAs can modulate the expression of plant defense genes. Here, we studied the sRNA classes and functions associated with Phytophthora infestans Argonaute (Ago) proteins. sRNAs were co-immunoprecipitated with three PiAgo proteins and deep s...
متن کاملAn RxLR Effector from Phytophthora infestans Prevents Re-localisation of Two Plant NAC Transcription Factors from the Endoplasmic Reticulum to the Nucleus
The potato late blight pathogen Phytophthora infestans secretes an array of effector proteins thought to act in its hosts by disarming defences and promoting pathogen colonisation. However, little is known about the host targets of these effectors and how they are manipulated by the pathogen. This work describes the identification of two putative membrane-associated NAC transcription factors (T...
متن کاملExpression profiling across wild and cultivated tomatoes supports the relevance of early miR482/2118 suppression for Phytophthora resistance
Plants possess a battery of specific pathogen resistance (R-)genes. Precise R-gene regulation is important in the presence and absence of a pathogen. Recently, a microRNA family, miR482/2118, was shown to regulate the expression of a major class of R-genes, nucleotide-binding site leucine-rich repeats (NBS-LRRs). Furthermore, RNA silencing suppressor proteins, secreted by pathogens, prevent the...
متن کاملSmall RNAs in Phytophthora infestans and cross-talk with potato
Small RNAs (sRNAs) are small non-coding RNAs usually ranging in size 20-30 nt. They are playing important roles in plant-pathogen interactions. This thesis aimed at studying the sRNA populations in potato and Phytophthora infestans and their role in the potato-P. infestans interaction. An attempt was also made to implement such knowledge to improve resistance in potato against P. infestans. P. ...
متن کامل